AD-A122 823

UNCLASSIFIED

PROCESSING TRANSLATIONAL MOTION SEQUENCES(U)
MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND
INFORMATION SCIENCE O T LAWTON OCT B2 COINS-TR-82-22
NO0OO14-75-C-0459 F/G 12/

END

oate
Fitueo

P
oTic



"m |0 82 iz

= - 22

|||2A2

T

lllllé C e iz

e
22 s e

P

MICROCOPY RESOLUTION TEST CHART
NAT NG wcRE AT b STAND ke el n



9\_‘

m‘sﬁ"ﬁmﬁ —
\M
m!ﬂb‘mm Unu"'M




PROCESSING TRANSLATIONAL MOTION SEQUENCES

Daryl 1. Lawton

COINS Technical Report 82-22

October 1982

ABSTRACT

“~ This paper presents a procedure for processing real world

image sequences produced by relative translational motion
between a sensor and environmental objects. In this
procedure, the determination of the direction of sensor
translation is effectively combined with the determination of
the displacements of image features and environmental depth

It requires no restrictions on the direction of motion, nor
the location and shape of environmental objects. It has been
applied successfully ¢to real-world image sequences from

several different task domains.

The processing consists of two basic steps: Feature

Extraction and Search. The feature extraction process picks
out small image areas which may correspond to distinguishing
parts of environmental objects. The direction of
translational motion is then +found by a search which
determines the image displacement paths along which a measure
of feature mismatch is minimized for a set of features The
correct direction of translation will minimize this error
measure and also determine the corresponding image
displacement paths for which the extracted features match
well. v .
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1. INTRODUCTION

This paper develops a procedure for processing real world
image sequences from a translating sensor. The procedure 15
not dependent on an initial matching process for finding image
displacements before inferring environmental depth and camera
motion. Instead:, the determination of the direction of sensor
translation is combined with the determination of the
displacements of image features and of environmental depth

No restrictions on the shape of environmental objects are
Tequired. The procedure has been applied to real world image
sequences under several different operating conditions with

robust performance.

The processing consists of two basic steps: Feature
xtr io and Search. The feature extraction process picks

out small image areas which may correspond to disting'ishing
parts of environmental objects. The direction of
translational motion 1is ¢then found by a search which
determines the image displacement paths along which a measure
of feature mismatch is minimized for a set of features. The
correct direction of ¢translation will minimize this error
measure and also determine the corresponding image
displacement paths for which the extracted features match

well.

The feature extraction process, which is presented in section




two., finds distinctive points along image contours determined
by simple processes which are sensitive to image edges. It
finds features which are positioned at points of high
curvature along these contours. The technique vtilizes

contours determined by zero—crossing extraction and image

thresholding.
The search process, which is presented in section three,
minimizes a simple error measure. This error measure is

defined with respect to 3 unit sphere with each point on the
sphere corresponding to a different direction of sensor
translation. A given direction of translation constrains the
motion of extracted image features to straight lines which
radiate from or converge onto a single point. The error
measure thus associates with a point on the unit sphere,
corresponding to a particular translational axis, a number
describing the total extent of feature mismatch along the
displacement paths determined by the translational axis
Experiments have shown this error measure to be smooth and
with a distinct minimum in a 1large neighboorhood about the
correct translational axis. Because of this, the search

process can be quite simple.

The fourth section presents several experiments shaowing the
results of applying the procedure in several different
situations. The experiments indicate that the procedure is

very robust and applicatle to a wide range of real world image

" sequences.




The fifth section discusses various aspects of the procedure

and outlines some applications and extensions.

1.1, Cogrdinate System

The camera model consists of a planar retina embedded in a
three-dimensional Cartesian coordinate system (X,Y,Z), with
the origin at the focal point and the optical axia aliygneld
with the positive Z-axis (figure 1). The X and Y axes
correspond to the gravitationally intuitive horizontal and
vertical directions respectively. The image plane is parallel
to the XY plane and at some distance along the Z axis.
Positions in the image plane are described wusing a 2-d
coordinate system aligned with the X and Y axes of the camera
coordinate system and with the origin determined by the

intersection of the image plane and the Z-axis.

The axes of translation are unit vectors based at the origin
of the camera coordinate system and are described by two
angles (Phil, Phi2) (figure 2). For a unit vector. V, based
at ¢the origin, Phil is the angle between the (0.1,0) vector
and the edge determined by the intersection of the VYZI plane
and the plane determined by the X axis and V. Phil thus
specifies a plane containing the X axis. Phi2 1is the angle

between (-1,0,0) and V. Note that for all angles a and b,
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(a,0)=(b,0) and (a,PI)=(b,PI).

ey,

adus

m
‘Avail and/o

Special

en Fer
3

s e i

tification . -

stribution/
vallablilry

ro55 L

3 GRAkI
o TAB
amaounced




%”// & :




Figure 2. (Phil, Phi2) Coordinates




1.2 Translational Motion Properties

It is necessary to have a set of ¢terms for describing the
motion of features in an image sequence and the corresponding
motion of environmental points. We define an lmage

Displacement Vector to be a3 two~dimensional vector describing

the displacement of an image feature from one image to the

next. An Image Displacement Field 1is the set of image
displacement wvectors for svuccessive images. An image

Displacement Sequence indicates the positions of an image

feature over several successive images. Though we are dealing
with discrete image sequences, it is often possible to descibe
the continuous curve along which an image feature point is

moving. This curve is called the Image Displacement Path.

Corresponding to image motions we use a set of ¢terms for
describing environmental motions. An Environmental

Displacement Field is the set of ¢three—-dimensional vectors

indicating the positions of environmental points at successive

instants. An Environmental Displacement §Segquence indicates

the position of an environmental point over severa' auccessive

instants. An Environmental Displacement Path describes the

three—dimensional curve that environmental points are moving

along for particular motions

For general camera motion, there are 5 parameters [PRABO.
PRAS11 that can be 1a2covered from processing image motion

without knowing absolute camera displacement or velocity

A
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(since absolute depth is lost): two parameters for the unit
vector (T1(t), T20(t)) which describes the axis of
translational motion at time ¢t; two parameters for the unit

vector (R1(t), R2(t)) describing the axis of rotation at time

t; and one parameter R3(t) which describes the extent of
rotation about this axis at time ¢. Both of these axes are
positioned at the origin of the camera coordinate system The

problem of processing image mation resulting from rTigid body
camera motion can be organized into subcases of increasing
complexity, corresponding ¢to the number of camera motion

parameters that are unconstrained

For purely translational motion, the image displacement paths
are determined by the intersection of the translational «x1s
with the image plane. If the translational axis 1intersects
the image plane on the positive half of the axis, the point of

intersection is called a Focus of Expansion (FOE) and the

image motion is along straight lines radiating from it. This
corresponds to camera motion towards environmental points. If
the translational axis intersects the image plane on the
negative half of the axis, the point 1is <called a Focus of
Contractjion (FOC) and the image displacement paths are along
straight lines converging towards it. This corresponds to
camera motion away from environmental points. The
intersections of axes parallel to the image plane are points

at infinity and are treated as FOEs




Given the direction of translation and image displacements.
the relative depths of points can be computed by solving the
inverse perspective transform [ROG76]. Relative depth can
also be inferred from the position of a feature and the extent
of its displacement relative to an FOE or an FOC. This

relation is expressed as

L.z

AD  AZ

where Z is the value of the Z component of an environmental
point at time ¢+1, del Z is the extent of environmental
displacement along the Z axis from time t to time ¢t+1, D is
the distance of the corresponding image point from the FOE or
FOC at time t and del D is the image point’s displacement from
time t to time t+1. Thus, the Z value of an environmental

point can be recovered from image measurements in units of del

Z, or what has been termed Time-Until-Contact by Lee L[LEE76].

The set of all possible translational axes describes a wunit
sphere called the translational direction spherve. The
procedures below are defined with respect to this sphere,
rather than the image plane itself, for reasons described in

section 5.2. 2.

1.3. Previous and Related Work

Cibson(GIBSO0, GIBb6b] was among the first to study the

importance of the structure of optic flow fields in the

L —— ‘




control of egomotion. He also pointed out the potential
importance of the FOE in tie translational case. This work

was extended by Purdy and by Lee [LEE76, LEEBOI Lee analyzed

the computation of important control information during
translational motion, such as time—~until-contact, braking
information. and environmental depth in a natural coordinate

system. However. recent work by Beverly and Regan [(REG7S,
REG79] indicates that an alternative mechanism may be used 1in
humans for determining the direction of translation than

extraction of a FOE or FOC.

Work in processing dynamic images [HUASI, MART 7%, NAGB 1.
THOB1, ULLB81] can be roughly divided into a set of techniques
for determining the changes in a sequence of images and a set
for interpeting these transformations. Determining 1mage
motion has involved work in change det=2ction, correlation
based matching techniques [QUA71, HAN74, LEV73], relaxation
based matching techniques [ DBAR79, PRABO ], region matching
I(NAG78, RAD813; image differencing [JAIBL], and
spatia’ -temporal analysis of the image gradient under
constraints of locally wuniform motion (THOBO] and smoothly

varying image motion [HOR81, GLAS11].

The interpetation of image motion can result in a variety of
descriptions such as determination of the occurrence and
location of change [(MAR791]. These include image segmentations
based on common motion C[THOB801; the recovery of camera motion

parameters and the shape of environmental ob jects. and more
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qualitative descriptions at a level ctompatible with natural
language descriptions [BAD76, TS080. 0‘ROUBOJ. Particularly
relevant here 1is work with the recovery of camera motion
parameters from an image sequence. Ullman CULL791]
demonstrated the minimal number of observable points necessary
to obtain a solution over time. Roach and Aggarwal [ROAB0]
investigated noise robust computations of the camera motion
parameters. Prazdny developed techniques for decomposing
optic flow fields [PRAB0] and displacement fields [(PRAB11 into
their rotational and translational components. The latter
result has been given a particularly simple algebraic
formulation by Nagel [NAGB1b1]. Tsai and Huang ([(TSAB1] have
1investigated the simplifications in determining camera motion
parameters by restricting the interpretation to planar surface

patches.

Williams C[WILBO] was the first ¢to develop algorithms ¢for
interpreting complex natural images produced by an optic
sensor translating relative to environmental objects. This
work consisted of two processes: one for inferring the
direction of translation given environmental depth information
and the other faor inferring depth given the direction of
motion. These processes used an error measure describing the
consistency of depth information and the inferences of feature
motion along image displacement paths. His work indicated
that these two processes, for inferring depth and the

translational axis, could be combined
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The primary weakness of Williams’ work was the necessary
restriction to planar surfaces at one demonstrated
orientation. Addit.onally, the processing 1s quite complex
when neither environmental depth nor the direction of
translation is known e involving segmentation,
resegmentation, and coordinating the processes for inferring
depth and for inferring the direction of translation The
method presented here TrTequires no rTestrictions on the
orientation of surfaces or shape of environmentil objects, and
involves only a simple procedure for evaluating an error
measvure. It also indicates that the direction of sensor

motion should be determined prior to, or concurrently with,

environmental depth. d

The determination of the vanishing point in a static 1image 1s
closely related to determining the direction of translation
because the FOE is the dynamic analogue of the wvanishing
point. In perspective progjection, parallel 1lines 1n the
environment map onto lines radiating from a vanishing point ain
the image. For translational motion, the environmental motion
paths correspond to the parallel 1lines in the perspective
case. Techniques for extraction of a vanishing point have

been developed by Kender [KEN7%] and Kitihashi [KIT801]. The

use of the Hough transform in this work is similar to the

global sampling of the error measure used below.




2. FEATURE EXTRACTION

The feature extraction process 1s used to determine small
areas (sometimes called image points or features) in an image
that are distinct from neighboring areas. This
distinctiveness limits the potential matches of these image
areas, and possibly reflects a correspondence to actual and

significant points in the environment, such as points of high

curvature on object boundaries, texture elements, surface
markings, etc. (However some features, termed false features.

will result from noise, occlusion, and 1light source effects
and have behavior which is currently difficult to interpet).
Features can be represented either as arrays of numbers
extracted directly from an image. or as parameterized tokens
describing local image properties. In this paper. we refer to
features exclusively as small arrays of data values centered

at some point in an image at some time ¢t.

Following Moravec [MOR77,MORE03], the method of feature
extraction wused here is based upon finding image areas which
are significantly different than their neighboring areas.
Using a correlation measure bounded between 1 (for perfect
correlation) and O. the distinctiveness of a feature is 1
minus the best correlation value obtained when the feature is
correlated with its immediately neighboring areas (see the
correlation measures in section 3.1.). Selecting good

features then requires finding the local maxima in the values




of the distinctiveness measure over an image

We have extended this approach somewhat by constraining the
neighborhoods over which the features are selected to contours
determined by other global processes, such as z2ero-(rossing

extraction and thresholding:, which are sensitive to edges

2. 1. Feature Extraction Using Zero-Crossings

The use of 1zero-crossings to determine significant 1mage
contours at different levels of resolution has been proposed
and extensively studied by Marr et. al. LHILB80. MARBO] In
this processing an image is convolved with Gaussian-Laplacian
masks ((del)##2g) of different positive widths and thresholded
at 11ero to determine zero-crossing contours. These contours
are significant since they correspond +to the points of
greatest change in the convolved image. The distinctiveness
measure can be applied to points along these contours 1n the
convolved image, with the 1lecal maxima determining the
position of potential features. This generally has the effect
of finding points of high curvseture along the zero—-crossing
caoantour, although points apparently corresponding to local

occlusion vertices and weak maxima will also be extracted

Many of the weak features which are 1local maxima of
distinctiveness <can be removed by suppressing those which are

at points of low curvature along the 1zero-crossing contours
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For features which are local distinctivness maxima. we
approximate the curvature along the contour by the inner
product of the normalized vectors describing the relative
positions of adjacent local maxima along the contour (figure
3). These values are then thresholded between 1.0
(corresponding to high curvature) and ~1.0 (corresponding to

low curvature)

Use of 1ero--crossing based features requires specification of
the si1zes of the <convolution masks that are employed, and
deciding whether to position extracted feature points with
respect to the unprocessed image or the convolved images. It
is vsually beneficial to use masks of various widths for
sensitivity to features at different levels of resolution.
The processing described below can be applied independently to
the pairs of successive images formed by convolving the
successive 1images with two such masks. Al ternatively,
features can be extracted from the original. unfiltered image
at the positions where features were determined in ¢the
convolved images. though experience with large masks has shown
that this approach can position features significant distances

from their apparent position in the original image.

The images in figure 4a and figure 4b were taken from a
gyroscopically stabilized movie camera held by & passenger in
a car traveling down a country road in Massachusetts. They

are 128x128 pixel ima‘es with & bits of vesolution in

intensity and will be referred to as the roadsiagn images

R
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Figure 4c shows the zero—crossings extracted from the initial
ROADSIGN image wusing a (del)##2g mask with a width of 5
pixels The distinctiveness wvalues were “computed using
features which were 5x5 pixel arrays extracted from the
convolved image and centered on pixels which were adjacent to
the 1z2ero—-crossing contour and of positive value. These
features were correlated, using Moravec’s norm (see section
3 1), with their 8 1immediately neighboring features. The
distinctiveness measure for a feature was set to 1 minus the

best correlation obtained in its neighborhood, excluding

itself. Figure 4d shows the local maxima in the
distinctiveness measure positioned with respect to the
zero—-crossing contour. Note that the features are centered on

pixels adjacent to the contour and not on the contour itself.
Figure 4e shows the results of suppressing low-curvature
points wusing a threshold set to -0.8 (corresponding to an

angle of 143 13 degrees).

2. 2 Feature Extraction Using Threshold Contours

Image contours can also be determined by thresholding. The
values of the threshold can be determined in a variety of
ways. such as wvusing fixed increments, finding peaks and
valleys in the image intensity histogram, or using techniques
sensitive to 1image contrast produced vusing a particular

threshold [KJIHB1, WES751].
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The images in figure 5a and Sb were produced from a solid
state camera held by a robot manipulator translating toward
some industrial parts lying on a table. The images were
initially 512x512 pixel images with 7 bits of intensity

resolution and were averaged down to 128x128 pixel images with

& bits of intensity resolution. These will be refered to as
the 1industrial 1images. Analysis of the 1image intensity
histogram, using the procedures described in [KOH811],

determined a clear break in the histogram at an intensity
level of 10 in the image. This corresponded to separating the
dark background and the brighter objects in the scene. Figure
95c¢ shows the extracted contour and figure 5d the local maxima
1in the distinctiveness measure of image features centered on
pixels adjacent to the contour and of intensity value greater
than or equal to ten. Figure Ye shows the extracted feature
points after low curvature suppression using a threshold set

to -0.B (corresponding to angle of 143.13 degrees).

.
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Figure 5¢c. Extracted Threshold Contour of Industrial Image 1




Figure 6d. Distinctive Feature Positions with Respect to Threshold Contour




Figure 5e. Distinctive Feature Positions After Low-Curvature Suppression
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3. SEARCH PROCESS

The search process minimizes an error measure which describes
the extent of mismatch for extracted features along the image
displacement paths determined by a hypathesized translational
axis. For example, figure & shows an FOE determined by a
potential translational axis and the image displacement paths
1t determines for some extracted features. Also shown is the
match profile for a particular feature along a segment of its
displacement path with respect to features positoned in the
succeeding image The adequacy of a proposed translational
axis 1s measured by the strength of the matches that the
extracted features have along these paths. This suggests
finding the best match for each feature along the image
displacement path determined by a translational axis and then
summing the extent of error in these best matches for the

error measure.

Developing this error measure requires a measure for the
degree of match between features and an interpolation process
for determining positions along an image displacement path

Each of these can be implemented in various ways with the
choices generally involving a trade-off between the speed of
evaluating the error measure and the precision with which the

translational axis can be determined
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Figure 6. Feature Displacements for a Potential Translational Axis
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G001 Match Metra
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There are several metrics for similarity of nxn pixel features
of the form A(i. j) and B(i, y), where 1 ranges from 1 to n and

J ranges from 1 to n We have vti1lized:

Normalized Correiation

L1 AGL)B(, )
i

//Z LA xACH ) //EVZ B(i,j)xB(i,])
J P

i
Moravec Correlation CMOR771

Y z Ai,j)xB(i,j)
J

(CCF § AGL 3 A, 5)) + (] ] 8(i, j)x8(i,j)))/2)
b b

Normalized Absolute Value Dif fervence

) 1 abs(A(i,j)-B(i,]))
[

LY oA, + ) ] B,
t g

1.0 -

All of these measures have a value of 1 for a perfect match.
Of# these, the +first choice is the most conventional, the
second a good approximation to the first, and the third 15 the

quickest to evaluate.
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3. 2. Interpolation Process

The interpolation process approximates the potential

displacements of a feature from an initial image into a

succeeding image. Depending on the accuracy required,
positions along the image displacement path can be
approximated roughly by setting the coordinates of the

feature’s position to the nearest 1integer value, or more
accurately by performing a subpixel interpolation ot the
feature at each of a set of selected positions along the 1mage
displacement path. The basic trade—-off is between speed and
accuracy, with subpixel interpolation being a more expensive

computation.

3 3 Error Measure

The error measure associates with a point on the direction of
translation sphere a number describing the quality of feature
matches along the image displacement paths determined by the
corresponding translational axis. This error value 1s
computed by first finding the best match for each feature
along a segment of the image displacement path determined by
the translational axis wusing one of the normalized match
metrics above. Each of these values is then subtracted from
one, and all the resulting values are added together to form

an error measure,. Thus, for a set of N features in an i1nitial

image, a hypothesized translational axis, and use of one of
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the match metrics above, the error measure is

n
} (1.0 - bestmatch(i))
i=1

where pestmatch(il) is the best match value associated with

feature 1 along the image displacement path determined for it

by the hypothesized translational axis

The error measure was computed in two forms in the experiments

below: a fast evaluation form and a precise evaluation form.

The fast form uses the absolute value norm and the nearest

integer approximation to determine feature position along the
image displacement paths. The fast form 1is wuseful for

evalvating image sequences with several extracted featuyres to

determine the rough position of the global minimum. However,
the +fast form 1is not adequate for fine determination of the
translational axis because it does not vary smoothly with
respect to small changes in the position of a translational
axis, due to the nearest integer approximation for feature

pasition.

The precise form of evaluation vuses the Moravec norm and
bpi-linear interpolation. It bas been found to vary smoothly
with respect to small changes in the position of a

translational axis.
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3.4. Gearch Qroanization

The search process used here consists of two phases. A global
sampling of the error measure determines the rough shape of
the error surface, then a local search determines the minimum.
The local search begins at the position where the minimum
value was determined by the global sampling. The procedure
used for the local search is steepest descent with a
diminishing step-size. That is, the steepest descent
procedure begins with a initial fixed step size and determines
4 local minimum using it. The step-size is then reduced and
the prodedure repeated until the step-size is at the desired
resolution for the determination of the translational axis

In the experiments below the initial step-size was set to O 1

and then reduced successively to 0.025 and 0. 003 radians.

As will be seen in the following experiments, the error
measure is smooth, with a single minimum in a large
neighborhood around the correct translational axis. Thus, the
global sampliﬁg can be quite sparse or the initial step size

of the local search guite large.
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The following experiments were performed wusing the roadsign
and industrial image sequences introduced earlier. They cover
a wide range of situations, The first experiment involves
determining the translational axis for the industrial image
sequence using the features indicated in figure Se. In this
sequence the translational axis intersects the image plane in
@ visible portion of the image. The second experiment
involves processing the industrial image sequence using a
small number of features that are positioned across the
initial image of the sequence. The third experiment involves
processing the roadsign image sequence using the features
extracted at the positions indicated in figure 4e from the
initial, unconvolved image. In this sequence the intersection
of the <translational axis and the image plane is not in the
visible portion of the image. The fourth experiment involves
processing the roadsign image sequence, but using the features
extracted prior to low-curvature suppression. This has the
effect of introducing weak and spurious features into the
error measure computation. The fifth experiment involves
processing the roadsign images using features extracted from a

small area of the initial image.

In all of the experiments, the maximal displacement along an
image displacement path was set to 10 pixels. Displacements

were in increments of 1 pixel along the image displacement

et




paths. Features were 7x7 pixel arrays centeread at the

positions in the indicated figures

For each experiment. the results of processing are contained
in 3 tables. The first two (tables a and b) indicate the
values of the error measure during the global sampling of
points wusing a fixed angular increment (equal to PI/10 or
0. 31416 radians or 18 degrees) on the direction of translation
sphere. The first of these tables corresponds  to
translational axes which intersect the image plane at FOEs

The second basically corresponds to those which intersect the
image plane at FOCs. Recall that the Phil coordinate
determines a plane containing the X-axis of the camera
coordinate system and Phi2 refers to positions of unit vectors

in such a plane.

The third table (table c) shows the minimal value determined
by the global sampling process and the successive values of
the error measure determined during the local search. In this
table, the position of the translational axis is referred to
in terms of (X,Y.2Z) camera coordinates. in addition to
(Phil,Phi2) coordinates, so that translational axes computed

under different situations can be compared

4. 1. Industrial Images

The procedure was applied to the industrial images wusing the
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features extracted at the positions shown in <figure Se
Tables .a and 1ib show the global sampling of the error measure
using the fast form of evaluation. Note the minima at

Phit=1 57080 and Phi2=1. 25660. Table 1c shows the suvuccessive

values of the 1local search wusing the precise form of
evaluation. The determined <¢translation axis is (-0. 13875,
-0 09887, O.98538). The I.mage displacements determined for

these features 1s shown in figure 7

4 2 Industrial Images with Selected Features

The procedure was again applied to the industrial image
sequence but wusing features which were selected by hand from
those indicated in figure Se. The positions of these 8

features are shown in figure 8.

Tables 2a and 2b show the global sampling of the error measure
using the precise form of evaluation. Note the minima st
Phil=1 57080 and Phi2=1. 57080. Table 2c shows the successive
position determined by the local search. The determined
translational axis was (-0.15438, -0 07896, 0. 9848%5). This
torresponds to an angular difference of 0. 0253 radians (1.4505

degrees) with respect to the axis determined in experiment 1.
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4. 3. Roadsign Image Seguence

The procedure was applied to the roadsign image sequence using
the +features extracted at the positions indicated in figure
4e. Tables 3a and 3b show the glcbal sampling of the errvor
measure using the fast form of evaluation. Note the minima at
Phil=2. 51330 and Phi2=0. 62832. Table 3c shows the successive
values of the local search wysing the precise form of
evalvation for the error measure. The translational ax1is
determined by this precess is (-0.83738, -0 42043, 0 34933)

The image displacements for the feature points shown 1n fiqure
4e consistent with this translational axis are shown i1n figure

9.

Given the direction of translation and image displacements,
the relative environmental depths of image points can be
recovered by the simple relation in equation 1 When 1mage
displacements are small, the inferred depth values can be
qQuite erratic due to sensitivity to small numbers 1n the
denominator in the left bhand side of equation 1 For thas
reason, it is necessary to keep track of the image
displacements over several successive images with concurrent
updating of the inferred depth values. This was done using a
sequence of four successive images from the roadsign sequence
beginning with roadsign images 1 and 2 and using the features
from image 1 at the pasitions in figure 4e The position of
the translational axis determined from images T(t) and 1(t+1)

was uvsed as the initial value in the local search for
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determing the translational axis for 1images l(t+1) and I(t+)

The displacements of all features along the contour 1n firaure
4c were determined along the 1image displacement paths
determined by the translational axis found for images I[(1) and
1(4). From these displacements the depth values for 1mage

points along the contour were computed using equation |

The roadsign sequence is particularly nice for presenting
depth processing results because the three environmental
ob jects in the images are at three distinct depths This 1¢
shown in figure 10a by the three distinct clusters in the
histogram of the depth values calculated for the points along
the contour. The wunits in the histogram are cummulative
time-until-contact valvues. That is., the depth is given 1n
uni*s of the displacement of the camera from I(1) to I(4)
along the Z-axis. From 1left to right, the first peak

corresponds te the sign, the second to the pole, and the thaird

to the trees. As can be seen, there is a wide range of depths
associated with the trees. Mapping these clusters back onto
contour points from figure 4c yields: the boundary shown n

figure 10b (the sign), the boundary shown 1n figure 10c (the
pole), the boundary segment shown in figure 10d (the trees)

Points near the image boundary of I(1) were ignored because
the processing did not take into account occlusion effects

along the image boundaries
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4 4 Roadsign Sequence with Redundant Features

The procedure was applied to the roadsign image sequence using
the features which were extracted prior to low-curvature
suppression. The positions of these features 15 shown 1in
figure 4d. This has the effect of including several weak and

false features in the evaluation of the error measure

Tables 4a and 4b show the values of the global sampling of the
error measure vusing the fast form of evaluation. Note the
minima at Phil=2 51330 and Phi2=0 62832. Table 4c shows the
successive values of the local search. The determined
translational axis was (-0.82%909, ~0. 42281, 0. 36585). This

corresponds to an angle of 0 0186 radians (1. 0676 degrees)

with respect to the axis determined in experiment 3.
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4. 5. Roadsign Subimage

The procedure was again applied to the roadsign 1mage sequence
with features restricted to the rectangular area shouwn 1n

figure 11 correponding to texture in the distant trees

Tables 5a and S5b show the values of the global sampling of the
error measure using the precise form of evalvation. Note the

minima at Phil=2. 19910 and Phi2=0. 62832. Table 5S¢ shows the

successive values determined oy the local search The
translational axis is determined to be (-0 84281, -0. 42928,
0. 32465). This corresponds to angles of O 02567 radians

(1. 5341 degrees) and 0. 0439 (2. 5155 degrees), with respect to
the translational axes determined in experiments 3 and 4

Tespectively.
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Phi? phi2 X Y z Error Stepsize
e TRz T ols0g02 <0.3us9 087553 0.059910
AL B 0.62832 -0.80902 ~0.39123 0.43867 0.059542 0.1
2,474 2.57832 -0.83738 -0.%2320 0.33837 0.059288 0.02S
2.4894) n.56832 -0.8u281 ~0.42928 0.32u65 0.059269 0.005
Table Sc
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5. DISCUSSION

This paper presents a simple and robust procedure for
determining the direction of environmental motion and 1mage
displacemensts in image sequences produced by a translating
Sensor. The procedure 1s vrobust in several different ways

It is resilent with respect to weak and false features It 1
not dependent on identical features being extracted 1in

successive images prior to matching It canmn use a small

number of features positioned across an image surface or a

small number of features from a limited area of the image

The primary difficulty with real-time implementation 1is the
expense of performing the interpixel interpolation for #ine
resolution and of performing correlations on features which
are arrays of pixels. The computational limitation 1s the
speed with which a feature <can determine and evaluate 1ts
potential matches given a specified translational axis. These
computations can be carried out in parallel amoung the
individual features. The &expense can be lessened somewhat
through the use of higher resolution images (to lessen the
need for interpixel interpolation), use of the absolute value
norm, and by sampling images at a rate sufficient to limit the
extent of feature displacements between images. Additionally,
if the direction of sensor translation is changing slowly,
information from processing preceeding images can be used to

speed up the procedure when applied to succeeding images. It




60
is also possible to modify the procedure so that feautres are
extracted from both images and correlations are performed only

at the positions where features have been extracted in the

succeeding image. This would probably affect the robustness
and resolution of the procedure. We hope that real-time
implementation will eventually be possible with special

purpose, highly parallel architectures

In the remainder of this section, we rTeview some specific
aspects of the procedure and outline some potential extensions

and applications.

S 1. Feature Extraction

——

Since the procedure’‘s performance is does not degrade severely
due to the occurrance of poor features, the type of feature
extraction used in probably not <critical. Nonetheless, the
feature extraction process used here could be extended in many
ways. The low-curvature suppression could take into account
boundary length along a contour between distinctiveness maxima
to determine whether to suppress or generate a feature for
further processing. It may also be possible to determine
points of high curvature along the boundary with out having to
walk along the contour by using operators which can directly

measure curvature C(KITC801.

Another useful extension would be to use information

B
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determined from the extraction of the translational axis to
isolate false features. This could 1involve removing those

features which have weak matches fraom the error measure

calculation once a translational axis has been determined and

re—-evalvating. Alternatively, the depth inferences could be
used to isolate the positions of poatential false featuresby

noting discontinuities in depth along an extracted contour

Extracted features could be removed from the re-evaluation of

the error measure if they are at or near such positions

P U P

Another type of feature which can affect the evaluatian of the
error measure are those near an FOE or FOC which is contained

in a visible portion of the image. Such features tend to move

very small amounts along their image displacement paths and
hence require +fine interpolation to determine their best

matches.

S. 2. Search Pracess

5.2 1. Properties of the Error Measure

In the experiments, the error measure has a distinct global
minimum at the point on the unit sphere corresponding to the
correct translational axis. It is expected to have such
behavior generally becavse it is very wunlikely that
translational axes that are far from the correct position will
' define image displacement paths that simultaneously allow good

matches for many features. Thus competing candidates for the

LA R T A A




_—

62

global minimum should not be widely separated.

The error measure is affected by both non-distinctive and
false features. Non—-distinctive features will match well for
many di1fferent translational axes. Large numbers of these
weak features will flatten the response of the error measure
False features will also distort the error measure since they
will often have their best matches with incorrect

translational axes

The effects of these poor features should be compensated by
the agreement of good features. Every oane of the good
features will tend to have a bad match for the incorrect
translational axis and their unanimity is expected to overide
the lack of discrimination of weak features and the random

quality of the matches of false features.

5.2.2. Utility of the Direction of Translation Sphere

There are significant advantages in defining the error measure
with respect to a wunit sphere, instead of the potential
pasitions of FOEs and FOCs in the image plane. The sphere is
a bounded surface which makes uniform global sampling of the
error measure feasible. Additionally, the resolution in the
position of the translational axis varies accross the surface
of the image plane. For example, the FOEs determined by

translational axes seperated by very small angles will be




(3
seperated by larger and larger distances in the plane as the
intersections of the translational axes and the 1image plane
are placed further from the visible image. The effect of this
on the error measure, when it is defined over the image plane;
is large flat areas for FOEs further from the visible portions
of the image. Finally, special criteria must be used to
distinguish between FOEs and FOCs if the error measure 19
defined relative to the image plane. Roughly parallel 1image
displacements could correspond to an FOE off to one side of
the image plane or to an FOC off to the opposite side On the
direction of translation sphere, the corresponding
translational axes would be close while on the plane they are

completely separated.

$.2 3. Optimization Procedure

The optimization procedure used here 1is very simple, and,
becauvse of the strong unimodality of the error measure and 1ts
smoothness, other techniques with more rapid convergence could
be wused. It is interesting to note, however, that the glabal
component of the optimization performed here is an instance of
a generalized Hough Transform (BAL81,0’R0OUB1) inwhich each
feature scales its vote for a particular translational axis by
the best match it can find consistent with the translational

axis.

=




64

S 3 Extensions and Applications

5 3. 1. Other Cases of Restricted Motion

The procedure developed in this paper is applicable to other
cases of unknown but restricted camera motions for which it is
computationally feasible to search directly through a subspace
of the camera motion parameters to determine feature matches.
Two particular cases are pure sensor Ttotation and motion

constrained to a known plane.

fFFfor pure sensor rotation, there are three unknown camera
parameters. Two for ¢the axis of rotation and one for the
extent of rotation about the axis. In this case. the error

measure would be defined with respect to a unit sphere inwhich
each point corresponds to an arxis of rotation. For each
rotational axis, the extent of displacement for image features
1s determined by different rotations about the axis. There is
the additional constraint in the Trotational case that the
displacements of all features must correspond ¢to the same

extent of rotation.

During arbitrary sensor motion relative to a stationary
environment, the image motion due to distant environmental
points is primarily due to the rotational component of sensor
motion Sensor rotation can be Trecovered by applying the
observer rotation procescing procedure to the images of such

distant points. The rotation can then be subtracted out to




yield successive 1mages rtelated by sensor translaticwn o ly
These resulting images can then be processed by the terhnique-

here.

S. 3. 2. Multiple Independently Moving Obgects

The processing here has been limited ¢to a3 camera moving
relative tco a stationary environment, or a stationaruy camera
with a stationary background and a single moving ob ject o
useful extension would allow for several 1i1ndependently moving
objects with different directions of translation The
technique of summation of eTToTs in feature matching anly
allows a single axis of translation to be determined and wilil
cause the analysis of the several objects i1n 1ndependent
motion to be confounded. Due to the similarity of the global
search and a generalized Hough transform nated above, the
suggested techniques for decomposing generalized Houygbh
transforms into constituvient objects having different

parameter values [ADIB2, BALB1, 0'ROUB1] may be applicable

Another approach is to segment an image into regions which
potentially correspond to objgects, or to arbitrarily divide
the image into regular overlapping subimages and perform the
translational analysis far each region er «ubimage

independently [WILBO, NAG791. Cxperiments have shown 21t 1

w1

possible to work with small image areas, at a size comparable

to extrarted regions or subimage areas. and still determine

- PR PR § s Mg
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the axi1s of translation with a reasonable level of precision
I+¥+ objects with similar translations correspond to several
difterent regions ar 1mage subareas: then similar
translational axes will be determined for these regions or
subi1mages If objects with different translations carrespond
to the same regions or subimages then there will be poor,
indistinct error values for the error function For this
secand case, 1t 1s necessary t>» resegment and redetermine a

translational axis.

5 3 3. Stabilized Retina

Translational processing is sufficient for vision—based
navigation in a stationary environment if the orientation of
the optic sensor can be fixed telative to the environment over
time In this case, sensor motion amounts to a sequence of

translations in possibly different directions over time.

A difficulty with such a stabilized retina is that much of the
environment would not be observable. This can be corrected by
using 38 set of such stabilized retinas arranged ¢to yield a
complete view of space. There would then be no need to rotate
the sensor to view a particular environmental point. A
passible arrangement of retinal surfaces is a cubical one

One of the retinal planes will always contain an FOE and
another will always ccatain an FOC (unless the direction of

motion is right on an edge of tha cube and the focal length




has not been properly adjusted) There will also be =ever.si
independent estimates of the directon of translation which ¢.un

be integrated

5 3 4. The Local Translationagl Decomposition

This technique can be extended to less Testricted forms o
sensor motion by applying the procedure for translational
motion to small, overlapping areas across an 1image surfare
over a sequence of images. This approximates more general
motions as consisting locally of environmental transiations
and interpets lacal image motion as resulting trom
environmental translations. The feasibility of this 1s based
upon experiments showing that the direction of translation can
be extracted with reasonable precision using small 1image aress
containing a few features. The resulting description
associates with a set of image points (or small image arvea<)
the approximated direction of motion of the corresponding
environmental points (or small environmental surface area)

As a low level representation of environmental motion, thais
can considerably simplify the recovery of the sensor motion
parameters CLAWB2]T. It can also provide qualitative
information concerning the —rough direction of motion of

objects in a scene
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